a2 United States Patent

Mam

US009424137B1

US 9,424,137 B1
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

BLOCK-LEVEL BACKUP OF SELECTED
FILES

Applicant: EMC Corporation, Hopkinton, MA

(US)
Inventor: Neelabh Mam, Bangalore (IN)
Assignee: EMC CORPORATION, Hopkinton,
MA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 242 days.

Appl. No.: 14/039,173

Filed: Sep. 27, 2013

Int. Cl.

GO6F 17/00 (2006.01)

GO6F 11/14 (2006.01)

U.S. CL

CPC .o, GO6F 11/1451 (2013.01)

Field of Classification Search
CPC GOGF 2201/84; GOGF 11/1451; GOGF
11/1469; GOGF 11/1448; GOGF 17/30174;
GOG6F 3/065; GOG6F 11/1446; GOGF 2201/815;
GOGF 11/1453
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,745,324 B1* 6/2004 Skazinski GOG6F 8/60
713/2

7,103,619 B1* 9/2006 Rajpurkar GO6F 17/30578
2005/0216788 Al* 9/2005 Mani-Meitav GO6F 11/1456
714/6.32

2007/0143563 Al* 6/2007 Pudipeddi GOG6F 3/0607
711/173

2007/0174569 Al* 7/2007 Schnapp ... GOG6F 3/0604
711/162

2008/0104355 Al* 5/2008 Moore GOG6F 3/0607
711/170

2010/0235831 Al* 9/2010 Dittmer GO6F 9/45558
718/1

* cited by examiner

Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Polsinelli PC

(57) ABSTRACT

A block-level backup of a selected file on a source volume is
done in an efficient manner by taking a snapshot copy of the
source volume, and creating, mounting, and formatting a
dynamically-extended backup volume, creating a sparse
backup file on the backup volume, and then consolidating
extents of the selected file while copying the extents at the
block level from the snapshot copy of the source volume to
the backup file on the backup volume. For an incremental
block backup, only extents of changed blocks of the selected
file are copied, and the changed blocks are identified by a
modified block map of a previous snapshot copy of the source
volume.

20 Claims, 5 Drawing Sheets

500
2 Biock-Level Backup
of aFile

I

Take a snapshot (Tiy) of the source volume that
hosts the file to be backed up

f91

l

On the backup storage, create a dynamic volume
container having a size sufficient to contain the file
to be backed up

f92

}

Mount the dynamic volume in read-wsite mode
This produces a raw mount that does not have aoy
allocated data blocks

J93

|

Format the dynamic volume in otder to build an
empty file system upon the dynamic volume
While the format is in progress, if the virtual

mount driver receives a request to write a value of

zeto to & specified block of the dysamic volume,
the virtual mount driver returns an

acknowled of ful write

without allocating or writing to a block of storage.

| /o

l

In the file sysiem built on the dynamic volume,
create a sparse file having no allecated blocks and
an identical name and an identical length to the file
to be backed up

-

B

U.S. Patent Aug. 23,2016 Sheet 1 of 5 US 9,424,137 B1

sy ,23 - /"24
< 26%“.“ CLIENT | 2’“% ------- CLIENT

05O | CLENT
i % T USER \ SYSTEM ADMIN. -

- '
USER DATA NETWORK

21
Y
NETWORK SERVER
ADAPTER
34
PROGRAM MEMORY 31
45 HARDWARE DATA
VOLUME BACKUP PROCESSOR
AND RECOVERY
/"33
i RANDOM ACCESS
TCPHP MEMORY
38
42 BUFFERS
FILE SYSTEM 37
MANAGER
CACHE MEMORY
.43
~
VOLUMES
—~44 a8
DATA STORAGE
DRIVERS DATA STORAGE
ADAPTERS
\-‘_______ _'____,,__—-—“ M_ m____,,..-f‘
PRIMARY DATA BACKUP
STORAGE DATA STORAGE
46 AT
SOURCE BACKUP
VOLUMES VOLUMES

FIG. 1

U.S. Patent Aug. 23,2016 Sheet 2 of 5 US 9,424,137 B1
51 52 53 54
FULL INCREMENTAL INCREMENTAL INCREMENTAL
BACKUP BACKUP (T,) BACKUP (T,) BACKUP (T5)
{To) =
s TIME
15 T T, T,
55&3 géﬁiﬁ WRITE BLOCKS TO
SOURCE VOLUME 64
VOLUME SN
W
43 IN-PROGRESS
SNAPSHOT
B3 VOLUME
70 ¥ 57 ~B5
REVERT TO CHANGED BLOCK ' BLOCK
SNAPSHOT TRACKING 18 ALLOCATION
MAP
VOLUME SNAPSHOT 58
FACILITY MODIFIED
BLOCK
BITMAP
Y iR | 55
BLOCK ACCESS TO -
LOGICAL VOLUMES B FREE
BLOCK
VOLUMES BITMAP
56
,—M
[' e RLOCKS OF
,,,,,,,,,,,,, Al DATA
SOURCE VOLUME |
W“
M.. ___-__,__,.«’

U.S. Patent

—~43

£

L

VIRTUAL MOUNT DRIVER

¥

63

VOLUME SNAPSHOT FACILITY |

1

61

BLOCKACCESS TO
LOGICAL VOLUMES

Aug. 23, 2016 Sheet 3 of 5 US 9,424,137 B1
81
BACKUP APPLICATION
¥ 42
FILE SYSTEM MANAGER -84
ACCESS RETRIEVAL POINTERS

54

IN-PROGRES
SNAPSHOT Ty

P

FREE
BLOCK BITMAR

e

PREVIOUS
SNAPSHOT T

VOLUMES

N

—8

R S

e

71

ey
i L

FILE O

-
73

o

-

FILE 1

FILE SYSTEM

SOURCE VOLUME

86

MODIFIED
BLOCK BITMAP

FILE_1
FILE SYSTEM

DYNAMIC VOLUME

DYNAMIC VOLUME
CONTAINER FILE

FILE SYSTEM

—____ BACKUP VOLUME

FIG. 4

U.S. Patent Aug. 23,2016 Sheet 4 of 5 US 9,424,137 B1

500
2 Block-Level Backup
of a File

¥
Take a snapshot (T} of the source volume that e 91
hosts the file to be backed up ~
¥
On the backup storage, create a dynamic volume — Q2

container having a size sufficient {o contain the file {_/
to be backed up

¥

Mount the dynamic volume in read-write mode. —~ g3
This produces a raw mount that does not have any \“/
allocated data blocks

Format the dynamic volume in order to build an /94
empty file system upon the dynamic volume. —
While the format is in progress, if the virtual

mount driver receives a request to write a value of
zero to g specitied block of the dynarsic volume,
the virtual roount drver returns an
acknowledgement of successful write completion
without aliceating or writing to a block of storage.

¥

In the file system built on the dynamic volurae, 705
create a sparse file having no allocated blocks and 7
an identical name and an identical length to the file
1o be backed up

U.S. Patent Aug. 23,2016 Sheet 5 of 5 US 9,424,137 B1

No {(Fuli Backup)

On the soapshot {TN), query the extents of the file a7
o be backed up. For each extent, read the block |/

data of the file on the snapshot (TN) and write this
block data sequentially to the sparse file on the
dynamic volume. For example, the extents are
queried using
FSCTL GET RETRIEVAL POINTERS, the
block data is written at the volume block level, and
the extents are coniiguous on the dynamic volume,

¥

{ End }

5
Y

y

Qu the most recent snapshot (T}, query the 7 a8
extents of the file to be wcrementally backed up.

Also, on the previous snapshot (T}, access the

changed block tracking dats. For each exten: that

has changed during the interval from Thp.q to Ty,
as indicated by the changed black tracking data

from the previous snapshot (TN.1), read the block

data of the file on the snapshot (T) and write this
block data sequentially to the sparse file on the
dynaniic volume. For example, the extents are
queried using
FSCTL GET RETRIEVAL POINTERS, the
block data is written at the vohime block level, and
the extents are contiguous on the dynamic volume.

A2

End

FIG. 6

US 9,424,137 B1

1
BLOCK-LEVEL BACKUP OF SELECTED
FILES

FIELD OF THE INVENTION

The various embodiments described herein relate gener-
ally to block-level backup of selected files, and in particular to
a way of reducing the time for backing up selected files to
produce a backup volume in a dynamic volume container.

BACKGROUND

Intoday’s computing environments, it is often desirable to
backup computer data by copying and archiving the data (e.g.,
creating a backup image) so that the data may be restored after
a data loss event (e.g., hardware failure, etc.). There are at
least two types of backup applications that are implemented
in this regard. File-level backup applications copy data from
a source location to a backup location on a file-by-file basis
regardless of where the data of the file is physically stored.
This means that the backup application attempts to build and
replicate the original file by reading the logical file system
present on the original location. The granularity of the result-
ing backup entities for file-level backups is therefore indi-
vidual files. Block-level backup applications, on the other
hand, bypass the file system and perform backups of entire
volumes of data from the original location.

One advantage of bypassing the file system for a block-
level backup is that there is no penalty in performance in cases
where the original location contains large numbers of files
(such performance impacts may take place if file-level
backup were to be used). As a result of bypassing the file
system, the granularity of the resulting backup entity for
block-level backups is therefore the entire volume’s image
(i.e., binary image). Another advantage of bypassing the file
system is that for certain storage volumes, a file-level backup
will not capture all of the data of interest on the storage
volume. For example, file-level backup may not capture data
from proprietary data structures that are not contained in files
ofafile system built and exposed on the storage volume. Such
data structures are found, for example, in various Microsoft
WINDOWS™ brand operating systems and Microsoft
EXCHANGE™ brand e-mail systems.

A way of block-level backup is to make and archive a full
backup of a source volume on a periodic basis, and to make
and archive an incremental backup of the source volume on a
more frequent basis. A differential backup is another name for
an incremental backup. For example, a full backup is made on
a weekly basis, at 2:00 a.m. on Sunday, and an incremental
backup is otherwise made on a daily basis, at 2:00 a.m. on
Monday, Tuesday, Wednesday, Thursday, Friday, and Satur-
day. Each incremental backup includes only the blocks of
data that have changed in the source volume since the previ-
ous backup. Each incremental backup also identifies all of the
changed blocks. The incremental backup includes a changed
block map that identifies the changed blocks, and the changed
block map is a block bitmap or an extent map. A block bitmap
includes a bit for each block ofthe source volume, and a bit set
to indicate that a corresponding block of data that has changed
in the source volume since the previous backup. An extent
map includes entries for extents of contiguous blocks of data
that have changed in the source volume since the previous
backup. For example, each extent entry includes an offset and
length for a corresponding extent, and the extent entries are
arranged in a list sorted by offset.

A conventional way of restoring a source volume to the
time of a selected incremental backup involves copying

10

15

20

25

30

35

40

45

50

55

60

65

2

blocks to the source volume from the most recent full backup
made before the time of the selected incremental backup, and
then copying blocks to the source volume from any and all
incremental backups that were made between the time of this
full backup and the selected incremental backup, and then
copying blocks to the source volume from the selected incre-
mental backup. These backups are copied successively to the
source volume in chronological order of the backups, begin-
ning with a full restoration of the source volume with the full
incremental backup, and ending with the copying of blocks
from the selected incremental backup to the source volume.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, in
which:

FIG. 1 illustrates a data network including a server provid-
ing clients with access to data storage;

FIG. 2 illustrates a backup schedule including a full backup
followed by a chronological series of incremental backups;

FIG. 3 illustrates a volume snapshot facility producing a
snapshot volume from a source volume;

FIG. 4 illustrates a backup application performing block-
level backup of a selected file to produce a backup volume in
a dynamic volume container; and

FIGS. 5 and 6 together show the procedure of the backup
application introduced in FIG. 4.

DETAILED DESCRIPTION

In the following description, various embodiments will be
illustrated by way of example and not by way of limitation in
the figures of the accompanying drawings. References to
various embodiments in this disclosure are not necessarily to
the same embodiment, and such references mean at least one.
While specific implementations and other details are dis-
cussed, it is to be understood that this is done for illustrative
purposes only. A person skilled in the relevant art will recog-
nize that other components and configurations may be used
without departing from the scope and spirit of the claimed
subject matter.

Although the process flows shown in the figures or con-
tained in following description may depict functional opera-
tions in a particular sequence, the processes are not necessar-
ily limited to the particular order or operations illustrated.
One skilled in the art will appreciate that the various opera-
tions portrayed in the figures can be changed, rearranged,
performed in parallel or adapted in various ways. Further-
more, it is to be understood that certain operations or
sequences of operations can be added to or omitted from the
processes, without departing from the scope of the various
embodiments. In addition, the process illustrations contained
herein are intended to demonstrate an idea of the process flow
to one of ordinary skill in the art, rather than specifying the
actual sequences of code execution, which may be imple-
mented as different flows or sequences, optimized for perfor-
mance, or otherwise modified in various ways.

FIG. 1 shows a data network 20 including a server 21 for
servicing requests from network clients 22, 23, 24 for access
to source volumes 46 in primary data storage 28. The network
clients 22, 23, 24, for example, are workstations operated by
respective human users 25, 26, 27. The primary data storage
28, for example, is an array of disk drives. The server 31 also
has access to backup data storage 29 storing backup volumes
47 of data from the source volumes 46. The backup data
storage 29 may use the same kind of data storage devices as

US 9,424,137 B1

3

the primary data storage 28, or the backup data storage 29
may use data storage devices that are slower and less expen-
sive than the data storage devices used for the primary data
storage 28.

The server 21 includes a hardware data processor 31, a
network adapter 32 linking the data processor to the data
network 20, random access memory 33, program memory 34,
and data storage adapters 35 linking the data processor to the
primary data storage 28 and the backup data storage 29. The
data storage adapters 35, for example, are Fibre-Channel
(FC), Small Computer Systems Interface (SCSI), or Internet
Protocol SCSI (iSCSI) host bus adapters. The data processor
31 is a general purpose digital computer data processor
including one or more core central processing units (CPUs)
for executing computer program instructions stored in the
program memory 34. The program memory 34 is a non-
transitory computer readable storage medium, such as a local
magnetic hard disk drive, or electrically erasable and pro-
grammable read-only memory (EEPROM). The random
access memory 33 includes buffers 36, and cache memory 37
for paging data from the primary data storage 28 or the
backup data storage 29.

The program memory 34 includes a program layer 41 for
network communication using the Transmission Control Pro-
tocol (TCP) and the Internet Protocol (IP). The program
memory 34 also includes a file system manager 42 for
responding to client requests for access to files in file systems,
and a logical volumes layer 43 providing access to logical
volumes upon which the file systems are built. The logical
volumes include the source volumes 46 and the backup vol-
umes 47. For example, each logical volume is configured
from one or more logical unit numbers (LUNs) of either the
primary data storage data storage 28 or the backup data stor-
age 29, and the logical volumes layer 43 translates logical
block numbers from the file system manager 42 to the LUNs
where the desired blocks of storage are found.

The various embodiments described herein relate gener-
ally to volume backup and recovery programs 45 executed by
the data processor 31 to produce the backup volumes 47 from
data of the source volumes 46, and to restore a selected source
volume to the time of a selected one of the backup volumes
that was produced from data of the source volume.

FIG. 2 illustrates a backup schedule producing a chrono-
logical series of backups of a source volume. The backups
include a full backup 51 a time T, followed by incremental
backups 52, 53, 54 at respective times T, T,, T5, etc. Once a
backup volume is made on the backup data storage, an archive
copy of the backup volume may be stored on magnetic tape or
optical disk. After a certain period of time, the backup volume
may be deleted from the backup data storage 29.

FIG. 3 shows a volume snapshot facility 63 producing a
snapshot volume 64 from a source volume 62. The volume
snapshot facility 63 operates at the volume level of the logical
volumes facility 43 to intercept volume write requests from
higher levels. Upon intercepting such a write request directed
to a specified block of the source volume 62, a changed block
tracking driver 67 accesses a block allocation map 65 in the
snapshot volume 64 to determine whether or not the specified
block has been changed since the time that the snapshot
process began upon the snapshot volume 64. For example, the
block allocation map 65 includes a modified block bitmap 68
in which a respective bit for each block is either a logical zero
indicating that the block has not been changed since the time
of'the snapshot, or else is a logical 1 indicating that the block
has been changed since the time of the snapshot.

If the block allocation map 65 indicates that the block has
been changed since the time of the snapshot, then the write

10

15

20

25

30

35

40

45

50

55

60

65

4

request is passed to the block access routine 61 of the logical
volumes facility 43, and new data is written to the specified
data block in the normal fashion. Otherwise, if the block
allocation map 65 indicates that the block has not changed
since the time of the snapshot, then the volume snapshot
facility 63 performs a “copy upon first write” by copying the
“before image” of the specified block from the source volume
62 to the snapshot volume 64. Once this copy operation has
been completed, the volume snapshot facility sends the new
data for the specified block down to the block access routine
61, and this new data is written to the specified block of the
source volume 62.

For example, the snapshot volume 64 includes a block data
region 66 for storing “before image” block data, and a free
block bitmap 69 for storing “before image” block metadata
about the block allocation state. The snapshot volume 64 may
conform to the Microsoft Virtual Hard Disk Image Specifi-
cation (Oct. 11, 2006—Version 1.0). In this case, “a copy
upon first write” upon a specified block includes checking the
allocation state of the specified block in the source volume,
and if the allocation state in the source volume indicates that
the specified block is free, then the “copy upon first write” is
finished because the free block bit map 69 has an initial state,
at the start of the snapshot process, indicating that all blocks
of the snapshot volume 64 are free. Otherwise, if the alloca-
tion state in the source volume indicates that the specified
block is allocated, then a data block in the region 66 is allo-
cated, the corresponding bit in the free block bitmap 69 is set,
and the data of the corresponding block is copied from the
source volume 62 to the allocated data block in the region 66.

To make full and incremental backups from the source
volume 62, a series of at least two snapshot volumes are kept
during client access to the source volume 62. For example, to
make a backup copy at a present time T, a snapshot process
in progress at this time T is terminated upon an old snapshot
volume (T5_,), and a snapshot process is begun upon a new
snapshot volume (Tg). Then, after the time T, a full backup
volume (T}) is created by copying the “before image” blocks
from the new snapshot volume (1) to a backup volume, or
else copying the blocks (which have not changed since Ty)
from the source volume 22, so that the full backup includes a
copy of every allocated block that was in the source volume
62 at the time Tj.

After the time T, an incremental backup volume (T5) is
created in the same way that the full backup volume (Ty)
except that the incremental backup volume only includes
block data or metadata for the blocks indicated as modified by
the modified bitmap from the snapshot volume (T ;). For
example, the incremental backup volume (Tg) has the same
modified bitmap as the snapshot volume (T _,). Thus, the old
snapshot volume (Tz_;) can be converted to an incremental
backup volume (T) by replacing the old block metadata and
old block data in the old snapshot volume with new block
metadata and new block data from the new snapshot volume
or else from the source volume. A full or incremental backup
volume may also conform to the Microsoft Corp. Virtual Hard
Disk Image Specification (Oct. 11, 2006—Version 1.0).

The volume snapshot facility 63 may also have a “revert to
snapshot” function 70 for restoring the source volume to the
“in progress” snapshot copy. Such a “revert to snapshot”
function scans the modified block bitmap 68 to restore the
modified blocks of the source volume with the block data and
metadata from the block data region 68 and the free block
bitmap 69. For example, such a “revert to snapshot” function
is included in the Microsoft Corp. Volume Shadow Copy
Service (VSS).

US 9,424,137 B1

5

The various embodiments disclosed herein relate to block-
level backup of one or more selected files from a source
volume to produce a backup volume containing backup cop-
ies of the selected files in a dynamic volume. Under certain
circumstances and in certain data processing environments,
such a backup method may enjoy the benefits of both file-
level backup and block-level backup and these benefits will
outweigh the relative disadvantages of both file-level backup
and block-level backup. For example, such a backup method
may be advantageous in circumstances and environments
where the conventional block-level volume backup method
would be desirable yet the conventional block-level volume
backup method would be precluded by a need to desire to
avoid a full backup of all of the data or metadata on the source
volume. In particular, the conventional block-level volume
backup method may be desirable because the source volume
is rather densely populated with file data that would be frag-
mented due to a rather large number of relatively small files or
due to fragmented files. Yet there may be a need to avoid a full
backup of all ofthe data or metadata on the source volume due
to software licensing restrictions precluding backup copies.
There may also be a desire to avoid copying files or volume
data or metadata that would not be needed from backup
storage during a recovery operation. However, a block-level
backup of only selected files should be done efficiently in
order to be competitive with a conventional block-level
backup that does not spend processing time identifying spe-
cific files on a source volume.

One specific situation where the backup method disclosed
herein is advantageous is a virtual machine environment
where a number of users or user groups may share a host
computer or a server so that it would be desirable to provide
a separate backup of the virtual machine configuration and
files for each user or user group in a separate portable
dynamic volume. A similar situation is an e-mail server in
which it would be desirable to provide a separate backup of
the e-mail for each user or user group in a separate portable
dynamic volume. Such a portable dynamic volume could be
used not only for recovery in the case of a host computer or
server failure or loss due to a disaster, but also for migration
of a user to another host computer or server.

Storing the backup in a dynamic volume provides a con-
venient way of using existing operating system and applica-
tion facilities for transporting, archiving, searching, and
mounting of the dynamic backup volume so that the files in
the dynamic backup volume can be easily exposed and
accessed when needed. The dynamic backup volume may be
simply a sparse file in which the dynamic backup volume
consists of the extent of the file. See, for example, Virendra
Mane U.S. Patent Application Publication US 2007/0136548
Al published Jun. 14,2007, incorporated herein by reference.
Alternatively, the dynamic backup volume may be contained
in a more complex container. For example, the dynamic
backup volume container may be partitioned into more than
one dynamic volume and may contain metadata about the
various partitions, such as a starting offset for each partition.
For example, the dynamic backup volume container may
represent a virtual hard disk. In particular, the dynamic
backup volume container may be compliant with the
Microsoft Corp. Virtual Hard Disk Image Specification (Oct.
11, 2006—Version 1.0).

FIG. 4, for example, shows that a file system 71 is built on
the source volume 62, and the file system includes at least two
files 72, 73. In this example, a block-level backup is made that
excludes the file 72 and includes the file 73. The backup is
contained in a dynamic volume container file 74. The extent
of the dynamic volume container file 74 contains a dynamic

20

30

40

45

50

55

6

volume 75. A file system 77 is built on the dynamic volume
75. The dynamic volume container file 74 is a file of a file
system 76 built on a backup volume 78.

To create the dynamic volume container file 74, a backup
application 81 invokes a virtual mount driver 84 for the par-
ticular format of the dynamic volume container file 74. To
create a full block-level backup of the file 73 on the source
volume 62, the data blocks of the file 73 in the snapshot 64 of
the source volume 82 at the time T,; are copied to a sparse
backup file 79 in the file system 77 on the dynamic volume 75.
Extents of the selected file 73 are consolidated while the
extents are copied at the block level from in-progress snap-
shot 64 of the source volume to the backup file 79 on the
dynamic volume 75.

Although the copying of the blocks of the file 73 could be
done at the level of operating system writes by opening the file
78, reading blocks of the file 73 from the in-progress snapshot
84, and writing the blocks to the backup file 79, a preferred
way of copying the blocks is to invoke the “access retrieval
pointers” function 84 of the file system manager 42 to obtain
the extents of contiguous blocks of the file 73, and then fetch
the data blocks of these extents from the volume snapshot
copy facility 53 for the snapshot 64, and then write these
blocks at the logical block level to the dynamic volume 75 by
invoking the virtual mount driver 82. In this case, the offset of
each extent on the dynamic volume 75 is the offset of each
extent in the file 73 in the snapshot 64 plus a constant. This
constant is the logical block number where the logical extent
of the file 79 begins on the dynamic volume 75. In other
words, the file 79 is not fragmented on the dynamic volume
75. When writing the data blocks to the file 79 at the logical
block level of the dynamic volume 75, there is a linear trans-
lation between the logical extent of the file 79 and a corre-
sponding extent of contiguous logical blocks of the dynamic
volume 75. This linear translation when writing the data
blocks at the logical block level to the dynamic volume 75
eliminates processing time that would otherwise be required
for accessing file mapping metadata of the file 79. This linear
translation when writing the data blocks at the logical block
level also avoids any side effects that could result from open-
ing and closing of'the file 79.

To create an incremental block-level backup of the file 73
on the dynamic volume 75, only changed blocks of the file 73
in the snapshot 64 at the time T, are copied to the dynamic
volume 75. The changed blocks that are copied are the blocks
of'the file 73 in the snapshot (T,) that have changed since the
time T,,, of the previous snapshot 85 of the source volume
62. These changed blocks are identified by the modified block
bitmap 86 of the previous snapshot 85. If the file 73 is sparse,
then the changed blocks may include blocks that were allo-
cated in the previous snapshot 85 at the time T, , and are free
in the snapshot 64 at the time T, (as indicated by the free
block map 69 of the snapshot 64). In this case such a free
block would represent a value of zero. In general, a value of
zero is not written to the dynamic volume 75 for either the
case of a full backup or the case of an incremental backup
because the dynamic volume 76 initially has all of its blocks
free and the virtual mount driver 82 interprets free blocks of
the dynamic volume 75 as having a value of zero.

The various embodiments disclosed herein may the
Microsoft Corp. Volume Shadow Copy Service (VSS) for the
volume snapshot copy facility 63, and may use patches to
interface VSS with the backup application 81 so that VSS and
the backup application may share access to the source volume
62 and the snapshot volumes 64, 65 without contention. The
backup application 81 may also use the patches to maintain
changed block bitmaps that are independent of the modified

US 9,424,137 B1

7

block bitmaps of the snapshot volumes 64, 65. The patches
are applied to the original write handler of the VSS driver that
is responsible for creating snapshots of the source volume.

For example, in order to track write operations upon the
source volume 62, a patch is applied to the WINDOWS™
filter driver “volsnap.sys”. The patch may be applied by
invoking an application programming interface (API) to find
the “volsnap.sys” filter driver by name, and then replacing an
entry point in a dispatch table ofthe “volsnap.sys” filter driver
to replace an original write handler of the “volsnap.sys” filter
driver with an alternative write handler of the backup appli-
cation 81. In a similar fashion, an original control handler of
the “volsnap.sys” filter driver may be replaced with an alter-
native control handler of the backup application 81. In this
case any /O flowing through the volume stack will then
invoke one of these alternative handlers, so that the alternative
handlers can track the write operations and control signals in
order to create the backups of the source volume 62.

The various embodiments disclosed herein may use ran-
dom access memory buffers (36 in FIG. 1) for the transfer of
the data blocks of the selected file from the source volume 62
and the in-progress snapshot volume 64 to the dynamic vol-
ume 74 when the dynamic volume 74 has been mounted.
These random access memory buffers are shared among the
backup application 81, the volume snapshot facility 63, and
the virtual mount driver 82. For example, the backup appli-
cation loads, in a memory buffer, the starting offset and length
of each extent of the selected file 73 to be read from the source
volume 62 or the in-progress snapshot volume 64. The data
blocks of the extents are then read from the source volume 62
or the in-progress snapshot volume 64 and stored and con-
solidated in a memory buffer. Then the virtual mount driver
82 writes the data blocks from the memory buffer into the
mounted dynamic volume 75. Request and acknowledgement
signals are exchanged between the backup application and
the volume snapshot facility 63, and between the backup
application and the virtual mount driver 82, to signal the
beginning and completion of the data transfers to and from the
memory buffer.

FIGS. 5 and 6 together show the procedure of the backup
application 81 introduced in FI1G. 4. In a first block 91 in FIG.
5, the volume snapshot copy facility is invoked to take a
snapshot (T,) of the source volume that hosts the file to be
backed up. Next, in block 92, on the backup storage, a
dynamic volume container is created. The dynamic volume
container has a size sufficient to contain a selected file to be
backed up. Then, in block 93, the dynamic volume is mounted
in read-write mode. This produces a raw mount that does not
have any allocated data blocks. Execution continues to block
94.

In block 94, the dynamic volume is formatted in order to
build an empty file system upon the dynamic volume. While
the format is in progress, if the virtual mount driver receives
a request to write a value of zero to a specified block of the
dynamic volume, the virtual mount driver returns an
acknowledgement of successful write completion without
allocating or writing to a block of storage. Execution contin-
ues to block 95.

Inblock 95, in the file system built on the dynamic volume,
a sparse file is created having no allocated blocks and an
identical name and an identical length to the file to be backed
up. Execution continues to block 96 in FIG. 6.

In block 96, execution continues to block 97 to produce a
full backup on the dynamic volume. In block 97, on the
snapshot (T,), the extents of the file to be backed up are
queried. For each extent, the block data of the file is read from
the snapshot (T,,), and this block data is written sequentially

25

30

40

45

50

55

8

to the sparse file on the dynamic volume. For example, the
extents are queried using FSCTL_GET_RETRIEV-
AL_POINTERS, the block data is written at the volume block
level, and the extents are contiguous on the dynamic volume.
Therefore the extents of the selected file are consolidated
while the extents are copied at the block level from the snap-
shot copy of the source volume to the backup file on the
backup volume. After block 97, the full backup of the selected
file is finished.

In block 96, execution continues to block 98 to produce an
incremental backup on the dynamic volume. In block 98, on
the most recent snapshot (T,), the extents of the file to be
backed up are queried. Also, on the previous snapshot (T, ,),
the changed block bitmap is accessed. For each extent that has
changed during the interval from T, to T,, as indicated by
the changed block bitmap from the previous snapshot (T, ,),
the block data of the file is read from the snapshot (T,,), and
this block data is written sequentially to the sparse file on the
dynamic volume. For example, the extents are queried using
FSCTL_GET_RETRIEVAL,_POINTERS, the block data is
written at the volume block level, and the extents are contigu-
ous on the dynamic volume. Therefore the extents of the
selected file are consolidated while the extents are copied at
the block level from the snapshot copy of the source volume
to the backup file on the backup volume. After block 97, the
incremental backup of the selected file is finished.

In the example of FIGS. 6 and 7, a single file was selected
for backup in the dynamic container. A similar procedure is
used for backing up multiple selected files on a dynamic
volume container. In this case, the dynamic volume container
created in block 92 has a size sufficient to contain the multiple
selected files, and block 95 and block 97 or block 98 are
repeated for each of the multiple selected files.

Another alternative for backup of multiple files is for the
multiple files to be included in a single container file on the
source volume, and to select this single container file for
copying to the dynamic volume on the backup volume. For
example, the single container file contains all of the files of a
user’s virtual machine in a virtualization environment on a
shared computer, or all of the archive e-mail files of a particu-
lar user on an e-mail server.

Although the backup and recovery operations have been
described above with respect to a network server (21 in FIG.
1), the backup and recovery operations can be performed in
other general purpose or specialized computing devices, such
as personal computers, desktop or laptop computers, or main-
frame computers, as well as cellular, wireless, and handheld
devices running mobile software and capable of supporting a
number of networking and messaging protocols. The backup
and recovery operations can be performed in a system includ-
ing any number of workstations running any of a variety of
commercially-available operating systems and other known
applications for purposes such as development and database
management. These devices also can include other electronic
devices, such as dummy terminals, thin-clients, gaming sys-
tems, and other devices capable of communicating via a net-
work.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting commu-
nications using any of a variety of commercially-available
protocols, such as TCP/IP, FTP, SFTP, UPnP, NFS and CIFS.
The network can be, for example, a local area network, a
wide-area network, a virtual private network, the Internet, an
intranet, an extranet, a public switched telephone network, an
infrared network, a wireless network, and any combination
thereof.

US 9,424,137 B1

9

In embodiments where the computing device includes a
Web server, the Web server can run any of a variety of server
or mid-tier applications, including HTTP servers, FTP serv-
ers, CGI servers, data servers, Java servers, and business
application servers. The server(s) also may be capable of
executing programs or scripts in response to requests from
user devices, such as by executing one or more Web applica-
tions that may be implemented as one or more scripts or
programs written in any programming language, such as
Java®, C, C# or C++, or any scripting language, such as Perl,
Python, or TCL, as well as combinations thereof. The server
(s) may also include database servers, including without limi-
tation those commercially available from Oracle®,
Microsoft®, Sybase®, and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the informa-
tion may reside in a storage-area network (“SAN”) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers,
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware ele-
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, touch screen, or keypad), and at least one output
device (e.g., a display device, printer, or speaker). Such a
system may also include one or more storage devices, such as
disk drives, optical storage devices, and solid-state storage
devices such as random access memory (“RAM”) or read-
only memory (“ROM”), as well as removable media devices,
memory cards, flash cards, etc.

Such devices also can include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device, etc.), and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium, representing remote, local, fixed, and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information. The system
and various devices also typically will include a number of
software applications, modules, services, or other elements
located within at least one working memory device, including
an operating system and application programs, such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard-
ware might also be used and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets), or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or trans-
mission of information such as computer readable instruc-
tions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other

10

15

20

25

30

35

40

45

50

55

60

65

10

memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by a system device.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:

1. A computer implemented method for performing block-
level backup of a selected file on a source volume, the method
comprising:

(a) taking a snapshot copy of the source volume;

(b) creating, mounting, and formatting a dynamically-ex-

tended backup volume;

(c) creating a sparse backup file on the backup volume;

(d) backing up the selected file comprising copying the

extents of the selected file at the block level from the
snapshot copy of the source volume to the backup file on
the backup volume; and

(e) consolidating extents of the selected file during the

copying.

2. The computer implemented method of claim 1, wherein
the block-level backup of the selected file is an incremental
backup, (d) further includes finding changed blocks of the
selected file by inspecting a modified block map of a previous
snapshot copy of the source volume, and copying extents of
only the changed blocks of the selected file from the snapshot
copy of the source volume to the backup file on the backup
volume.

3. The computer implemented method of claim 1, wherein
the dynamically-extended backup volume is the logical
extent of a sparse container file.

4. The computer implemented method of claim 1, wherein
the dynamically-extended backup volume is contained in a
container file that is compliant with a Microsoft Virtual Hard
Disk Image Specification.

5. The computer implemented method of claim 1, wherein
(c) includes giving the backup file a name identical to a name
of'the selected file, and giving the backup file a logical extent
length identical to a logical extent length of the selected file.

6. The computer implemented method of claim 1, wherein
(d) further includes invoking a file system manager to provide
retrieval pointers for the extents of the selected file in the
snapshot copy of the source volume, and using the retrieval
pointers to fetch blocks of the extents of the selected file at the
block level from the snapshot copy of the source volume, and
writing the blocks of the extents of the file at the block level to
the dynamically-extended backup volume.

7. The computer implemented method of claim 1, further
comprising the backup volume, in response to a write request
to write predetermined data to the volume backup, declining
to execute the write request and responding and responding
that the write request has been executed.

8. A computing system, comprising:

at least one processor; and

memory including instructions that, when executed by the

at least one processor, cause the computing system to
perform block-level backup of a selected file on a source
volume by:

(a) taking a snapshot copy of the source volume;

US 9,424,137 B1

11

(b) creating, mounting, and formatting a dynamically-ex-

tended backup volume;

(c) creating a sparse backup file on the backup volume;

(d) backing up the selected file comprising copying the

extents of the selected file at the block level from the
snapshot copy of the source volume to the backup file on
the backup volume; and

(e) consolidating extents of the selected file during the

copying.

9. The computing system of claim 8, wherein the block-
level backup of the selected file is an incremental backup, (d)
further includes finding changed blocks of the selected file by
inspecting a modified block map of a previous snapshot copy
of the source volume, and copying extents of only the
changed blocks of the selected file from the snapshot copy of
the source volume to the backup file on the backup volume.

10. The computing system of claim 8, wherein the dynami-
cally-extended backup volume is the logical extent of a sparse
container file.

11. The computing system of claim 8, wherein the dynami-
cally-extended backup volume is contained in a container file
that is compliant with a Microsoft Virtual Hard Disk Image
Specification.

12. The computing system of claim 8, wherein (c) includes
giving the backup file a name identical to a name of the
selected file, and giving the backup file a logical extent length
identical to a logical extent length of the selected file.

13. The computing system of claim 8, wherein (d) further
includes invoking a file system manager to provide retrieval
pointers for the extents of the selected file in the snapshot
copy of the source volume, and using the retrieval pointers to
fetch blocks of the extents of the selected file at the block level
from the snapshot copy of the source volume, and writing the
blocks of the extents of the file at the block level to the
dynamically-extended backup volume.

14. The computing system of claim 8, wherein the memory
includes instructions to have the backup volume, in response
to a write request to write predetermined data to the volume
backup, declining to execute the write request and responding
and responding that the write request has been executed.

15. A non-transitory computer readable storage medium
storing one or more sequences of instructions executed by one

25

30

35

40

12

or more processors to cause the one or more processors to
perform block-level backup of a selected file on a source
volume by:

(a) taking a snapshot copy of the source volume;

(b) creating, mounting, and formatting a dynamically-ex-

tended backup volume;

(c) creating a sparse backup file on the backup volume 3;

(d) backing up the selected file comprising copying the

extents of the selected file at the block level from the
snapshot copy of the source volume to the backup file on
the backup volume; and

(e) consolidating extents of the selected file during the

copying.

16. The non-transitory computer readable storage medium
of claim 15, wherein the block-level backup of the selected
file is an incremental backup, (d) further includes finding
changed blocks of the selected file by inspecting a modified
block map of a previous snapshot copy of the source volume,
and copying extents of only the changed blocks of the
selected file from the snapshot copy of the source volume to
the backup file on the backup volume.

17. The non-transitory computer readable storage medium
of claim 15, wherein the dynamically-extended backup vol-
ume is the logical extent of a sparse container file.

18. The non-transitory computer readable storage medium
of claim 15, wherein the dynamically-extended backup vol-
ume is contained in a container file that is compliant with a
Microsoft Virtual Hard Disk Image Specification.

19. The non-transitory computer readable storage medium
of claim 15, wherein (c¢) includes giving the backup file a
name identical to a name of the selected file, and giving the
backup file a logical extent length identical to a logical extent
length of the selected file.

20. The non-transitory computer readable storage medium
of claim 15, wherein (d) further includes invoking a file
system manager to provide retrieval pointers for the extents of
the selected file in the snapshot copy of the source volume,
and using the retrieval pointers to fetch blocks of the extents
of'the selected file at the block level from the snapshot copy of
the source volume, and writing the blocks of the extents of the
file at the block level to the dynamically-extended backup
volume.

